The distribution and variability of ozone in the UT/LS during CRYSTAL-FACE

E. Richard*, E. Ray*, K. Rosenlof, and T. Thompson
NOAA Aeronomy Laboratory
*also CIRES, University of Colorado, Boulder

M. Loewenstein, H.-J. Jost and J. Lopez
NASA Ames

B. Ridley, A. Weinheimer, D. Knapp, and D. Montzka

Ozone Vertical Profiles during CRYSTAL-FACE

20020723

5-day Back Trajectory

Southern Flights

20020709

Ozone correlations vs. Potential Temperature

Chemical Ozone Loss from Biomass Plumes

Schematic Overview

Summary

"Wedge" of Mid Lat LS air pushing into Sub Tropic LS
 Lower transition region at "Tropopause"
 Upper transition region near 400 K

Consistent with trajectories over the duration of CRYSTAL-FACE
 Upper region decreasing over time as flow re-establishes

Evidence of biomass burning: Elevated NOy and CO possible chemical ozone loss associated with plumes

→ Try to quantify mixing and transport